the same base. This indicates that the competing $k_{i}-k_{-\mathrm{i}}$ pathway (eq 19), which involves an intramolecular proton switch, ${ }^{23}$ plays a minor, if any, role in the BID system.

This is consistent with the behavior of 1 and 2. However, it contrasts with our findings for $3^{2,5 \mathrm{~b}}$ where the $k_{-}-k_{-i}$ pathway contributes significantly to the reaction; i.e., $k_{2} \mathbf{H}_{2} \mathrm{O}$ has to be replaced by $k_{2}{ }^{\mathrm{H}_{2} \mathrm{O}}+k_{\mathrm{i}}$ and $k_{-2}{ }^{\mathrm{OH}}$ by $k_{-2}{ }^{\mathrm{OH}}+K_{\mathrm{a}}{ }^{\mathrm{OH}} k_{-1} / K_{\mathrm{w}}$, with k_{i} and $K_{\mathrm{a}} \mathrm{OH}_{\mathrm{H}_{\mathrm{i}}} / K_{\mathrm{w}}$ being actually the dominant terms. The reasons why the intramolecular proton switch is a significant pathway in some systems but not in others have been discussed elsewhere. ${ }^{24}$

Experimental Section

Materials. 1,3-Indandione (Aldrich) was recrystallized from 100% ethanol, $\mathrm{mp} 130-131^{\circ} \mathrm{C}$ (lit. $130^{\circ} \mathrm{C}^{25}$) prior to use. Benzylidene-1,3indandione (BID) was prepared from benzaldehyde and 1,3 -indandione in ethanol, with piperidine as catalyst, according to the procedure of Behere and Nayak, ${ }^{26} \mathrm{mp} 152^{\circ} \mathrm{C}$ (lit. $152-153^{\circ} \mathrm{C}^{27}$). Benzaldehyde was
(23) Such an intramolecular proton switch most likely involves a water bridge in the transition state ${ }^{24}$
(24) Bernasconi, C. F.; Hibdon, S. A.; McMurry, S. E. J. Am. Chem. Soc. 1982, 104, 3459.
(25) Sieglitz, G. Chem. Ber. 1951, 84, 607.
purified by washing, drying, and vacuum distillation, according to the method of Perrin ${ }^{28}$

Phenols were recrystallized from hexane prior to use. Chloroacetic acid was recrystallized from petroleum ether. Methoxyacetic acid was distilled, and piperidene was distilled following refluxing over CaH_{2}. All other reagents were commercial products used without further purification.

Kinetics. The fast reactions were monitored on a Durrum stoppedflow apparatus with computerized data handling. ${ }^{29}$ For OH^{-}and PhO^{-} addition, KOH or buffered PhOH solutions were mixed with solutions of BID containing a little HCl (to prevent hydrolysis in the reservoir syringe).

The slow reactions were measured in a Perkin-Elmer Model 559A spectrophotometer. In most cases, cuvettes containing buffer solution were equilibrated at $20^{\circ} \mathrm{C}$, and either BID or ID, followed (after a few minutes) by benzaldehyde, was added by injecting a few microliters of concentrated stock solution. For the slow conversion of $\mathrm{T}_{\mathrm{OH}^{-}}$to products the usual method was the same as above, but a higher concentration of BID ($5 \times 10^{-4} \mathrm{M}$) was required in order to achieve high enough $O D$ changes.
pH's were measured as described previously. ${ }^{5}$
Acknowledgment. This research was supported by Grant CHE-8315374 from the National Science Foundation.

Registry No. BID, 5381-33-9; ID, 606-23-5: PhCHO, 100-52-7.
Supplementary Material Available: Kinetic data, Tables S1-S10 (9 pages). Ordering information is given on any current masthead page.
(26) Behera, R. K.; Nayak, A. Indian J. Chem. 1976, 14B, 223.
(27) Pritchard, R. B.; Lough, C. E.; Currie, D. J.; Holmes, H. L. Can. J. Chem. 1968, 46, 775.
(28) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. "Purification of Laboratory Chemicals", 2nd ed.; Pergamon Press: New York, 1980; p 553. (29) Software developed by Dr. F. A. Brand.

Nucleophilic Addition to Olefins. ${ }^{1}$ 14. Kinetics of the Reaction of 1,3 -Indandione Anion with Benzylidene-1,3-indandione

Claude F. Bernasconi, ${ }^{*}$ Alan Laibelman, and Janie L. Zitomer
Contribution from the Thimann Laboratories of the University of California, Santa Cruz, California 95064. Received May 2, 1985

Abstract

The rate and equilibrium constants of the reversible addition of 1,3-indandione anion (ID ${ }^{-}$) to benzylidene-1,3-indandione (BID) have been determined in $50 \% \mathrm{Me}_{2} \mathrm{SO}-50 \%$ water at $20^{\circ} \mathrm{C}: k_{1}=7.23 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}, k_{-1}=9.35 \times 10^{-3} \mathrm{~s}^{-1}, K_{1}=7.73$ $\times 10^{5} \mathrm{M}^{-1}$. The intrinsic rate constant for this reaction is about 300 -fold lower than for the analogous reaction of malononitrile anion (MN^{-}) with benzylidenemalonotrile (BMN). This is consistent with numerous previous observations according to which reactions involving more strongly resonance-stabilized carbanions have lower intrinsic rates (higher intrinsic barriers). The ratio of 300 in the intrinsic rate constants is larger than the corresponding ratios in the addition of hydroxide ion to BMN vs. BID, or the addition of MN^{-}vs. ID ${ }^{-}$to benzaldehyde. This is not surprising since the reactions of ID with BID and the one of MN^{-}with BMN both involve two carbanionic sites. Our results, as well as similar findings in the comparison of the $\mathrm{MN}^{-} / \mathrm{BMN}$ system with the nitromethane anion/ β-nitrostyrene system, constitute Marcus-type behavior, although the quantitative adherence to a modified Marcus equation is not very good. The $\mathrm{p} K_{\mathrm{a}}$ values of both the keto and the enol form of the BID/ID ${ }^{-}$ adduct and proton-transfer rates involving the keto form were determined. The enol content of the adduct is much higher than that of ID itself. This is attributed to intramolecular hydrogen bonding in the adduct. Proton transfer at carbon of the adduct is, for a given $\Delta \mathrm{pK}$, slower by a factor of ~ 12 than at carbon of ID, showing the operation of a steric effect.

We recently reported a kinetic study of the Michael addition of malononitrile anion (MN^{-}) to benzylidenemalononitrile (BMN) in water and in $50 \% \mathrm{Me}_{2} \mathrm{SO}-50 \%$ water. ${ }^{2}$ In this latter solvent, the reaction has an equilibrium constant, $K_{1}=k_{1} / k_{-1}$, of 1.45
(1) Part 13: Bernasconi, C. F.; Laibelman, A.; Zitomer, J. L. J. Am Chem. Soc., preceding paper in this issue.
(2) Bernasconi, C. F.; Zitomer, J. L., Fox, J. P.; Howard, K. A. J. Org. Chem. 1984, 49, 482.

$\times 10^{5} \mathrm{M}^{-1}$ and is quite rapid, with $k_{1}=9.50 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{-1}=6.52 \mathrm{~s}^{-1}$.

The high rate constants are not surprising in the context of other reactions which lead to the formation or destruction of malono-
nitrile-type anions. For example, protonation of malonotrile anions, ${ }^{3}$ addition of nucleophiles other than $\mathrm{CH}(\mathrm{CN})_{2}{ }^{-}$to $\mathrm{BMN},{ }^{4,5}$ and the loss of $\mathrm{CH}(\mathrm{CN})_{2}{ }^{-}$from adducts such as 1^{5} and $2^{4,6}$ are

all quite fast when compared to analogous reactions involving other types of carbanions. ${ }^{7}$ In other words, the intrinsic rate constant, $k_{0}{ }^{8}$ (intrinsic barrier, $\Delta G^{\ddagger}{ }_{0}{ }^{8}$), of reactions involving malono-nitrile-type anions is generally substantially higher (the intrinsic barrier is substantially lower) than for reactions involving other types of stabilized carbanions. This has been attributed to the smaller degree of resonance stabilization of malononitrile-type anions as compared with other carbanions such as nitronate ions, enolate ions, etc. ${ }^{7}$

We now wish to report a kinetic study of the Michael addition of 1,3 -indandione anion (ID $^{-}$) to benzylidene-1,3-indandione (BID). One might expect that the equilibrium constants for

reactions 1 and 4 would be of comparable magnitude because the lower basicity of ID^{-}compared with that of $\mathrm{MN}^{-}\left(\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{ID}}=6.35,{ }^{9,10}\right.$ $\mathrm{p} K_{\mathrm{a}}^{\mathrm{MN}}=10.21^{2,9}$) should be compensated for by a higher stability of $\mathrm{T}_{I D}{ }^{-}$compared with that of $\mathrm{T}_{\mathrm{MN}}{ }^{-}$. Thus a comparison of the rate constants for the two reactions should afford an approximate measure of the relative intrinsic rate constants, $k_{0}{ }^{\mathrm{ID}} / k_{0}{ }^{\mathrm{MN}}$ (or difference in the intrinsic barriers, $\Delta \Delta G^{\ddagger}{ }_{0}$).

What makes a comparison of reactions 1 and 4 particularly interesting is that both involve two carbanionic sites. In reaction 1 there is concurrent formation and destruction of a "fast" carbanion while in eq 4 there is concurrent formation and destruction of a relatively "slow" carbanion. One therefore wonders whether the difference in intrinsic rates or intrinsic barriers will be magnified compared with reactions where only one carbanion is either formed or destroyed. Such enhancement of the difference in intrinsic rates would correspond to Marcus-type ${ }^{11}$ behavior.

Our results will show that there is indeed such an enhancement but that it falls short of what one might expect on the basis of a quantitative application of a Marcus-type formalism. This study

[^0]

Figure 1. Kinetics of adduct formation between $1 \mathrm{D}^{-}$and BID .
also allowed a determination of the carbon and oxygen (enol) $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{T}_{\mathrm{ID}}{ }^{-}$, and of the proton-transfer rates at carbon of $\mathrm{T}_{1 \mathrm{D}}{ }^{-}$.

Results

General Features. All experiments were conducted in 50% $\mathrm{Me}_{2} \mathrm{SO}-50 \%$ water (v / v) at $20^{\circ} \mathrm{C}$. ID and BID are virtually insoluble in pure water; $50 \% \mathrm{Me}_{2} \mathrm{SO}$ was the solvent of choice because many of our previous studies were performed in this solvent.

Kinetic experiments were conducted under pesudo-first-order conditions with ID ${ }^{-}$as the excess component. Constant pH was maintained by appropriate buffers. The ionic strength was kept at 0.5 M with KCl .

Formation of the Michael adduct $\mathrm{T}_{1 \mathrm{D}}{ }^{-}$was established by its $\mathrm{UV} / \mathrm{vis}$ spectrum ($\lambda_{\max } 425 \mathrm{~nm}, \epsilon 2250$) which is quite similar to that of ID $^{-}\left(\lambda_{\max } 415 \mathrm{~nm}, \epsilon 2300\right)$ and to that of the hydroxide ion adduct of BID $\left(\lambda_{\max } 430 \mathrm{~nm}, \epsilon 2200\right) .{ }^{1}$ BID has $\lambda_{\max } 343 \mathrm{~nm}$, $\epsilon 19500$.

Kinetics of Adduct Formation. Rates were measured in the stopped-flow apparatus in dilute 4 -cyanophenol buffers around pH 7.8 to 7.9. In this pH range ID is almost completely ionized ($\mathrm{p} K_{\mathrm{a}}{ }^{1 \mathrm{D}}=6.35$) and the hydrolysis of BID is negligibly slow. ${ }^{1}$ Pseudo-first-order rate constants, $k_{\text {obsd }}$, were measured as a function of [ID^{-}] by monitoring the disappearance of BID at 343 nm .
The results are summarized in Table S 1 (supplementary materials). ${ }^{12}$ A plot of $k_{\text {obsd }}$ vs. [ID-] is shown in Figure 1. It affords $k_{1}=7.23 \pm 0.02 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The intercept $\left(k_{-1}\right)$ is indistinguishable from zero.
$\mathbf{p H}$-Jump Experiments. In order to evaluate k_{-1} the equilibrium was approached from the adduct side. $\mathrm{T}_{1 \mathrm{D}}{ }^{-}$was generated in a $\mathrm{pH} 8-9$ solution. This solution was then subjected to a pH jump by mixing it with an acidic carboxylate buffer or an HCl solution, either in the stopped-flow apparatus or in a conventional spectrophotometer.

When the reaction was monitored at $425 \mathrm{~nm}\left(\lambda_{\max }\right.$ of $\left.\mathrm{T}_{1 \mathrm{D}}{ }^{-}\right)$a relatively rapid ($30-300 \mathrm{~ms}$) loss of OD was observed. Monitoring the reaction at 343 nm ($\lambda_{\max }$ of BID) showed an increase in OD, but this increase was much slower ($10^{2}-10^{4} \mathrm{~s}$) than the disappearance of $\mathrm{T}_{1 \mathrm{D}}{ }^{-}$at 425 nm .

The results obtained in HCl solution are summarized in Table $\mathrm{I} ; \tau_{1}^{-1}$ designates the pseudo-first-order rate constant for the first, τ_{2}^{-1} for the second process. Figure 2 shows that τ_{1}^{-1} increases with increasing hydrogen ion activity up to a point and then levels off. On the other hand, τ_{2}^{-1} decreases with decreasing pH ; the latter data are plotted as $\left(\tau_{2}{ }^{-1}\right)^{-1}=\tau_{2}$ vs. $a_{\mathrm{H}^{+}}$in Figure 3. Additional data, summarized in Table S^{12} ($32 \tau_{1}{ }^{-1}$ values and 23

Table I. pH-Jump Experiments in HCl Solution in 50%
$\mathrm{Me}_{2} \mathrm{SO}-50 \%$ Water at $20^{\circ} \mathrm{C}$

pH	$\begin{aligned} & \tau_{1}{ }^{-1}, b \\ & \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} 10^{4} \times \tau_{2}{ }^{-1},{ }^{c} \\ \mathrm{~s}^{-1} \end{gathered}$
1.24		0.737
1.26	15.8	
1.34		0.884
1.36	15.7	
1.48		1.16
1.50	15.5	
1.67		1.89
1.70	14.6	4.65
2.10		
2.13	11.6	7.82
2.18	11.3	
2.23	10.7	8.29
2.37	9.85	10.8
2.54	8.36	
3.03	5.73	28.9
3.09	5.35	33.5
3.18	4.76	36.3
3.28	4.38	42.2
3.43	3.87	

${ }^{a} \mu=0.5 \mathrm{M}(\mathrm{KCl}),\left[\mathrm{T}_{1 \mathrm{D}}{ }^{-}\right]_{0} \approx 10^{-4} \mathrm{M}$ (see Experimental Section). ${ }^{b}$ Loss of $\mathrm{T}_{\text {ID }}{ }^{-}$at 425 nm . ${ }^{c}$ Formation of BID at 343 nm .

Figure 2. Dependence of τ_{1}^{-1} on $a_{\mathrm{H}^{+}}$according to eq 6; from $\mathrm{pH}-\mathrm{jump}$ experiments.
$\tau_{2}{ }^{-1}$ values), indicate strong, linear buffer dependence of $\tau_{1}{ }^{-1}$, but no buffer dependence for $\tau_{2}{ }^{-1}$.
We offer the following interpretation. The $\tau_{1}{ }^{-1}$ process refers to carbon protonation of $\mathrm{T}_{I D}{ }^{-}$, with rapid oxygen protonation (enol formation) acting as a rapid preequilibrium, as shown in Scheme I. According to this scheme, τ_{1}^{-1} is given by

$$
\begin{equation*}
\tau_{1}^{-1}=\frac{K_{\mathrm{a}}^{\mathrm{E}}}{K_{\mathrm{a}}^{\mathrm{E}}+a_{\mathrm{H}^{+}}}\left(\mathrm{k}_{2}{ }^{\mathrm{H}} a_{\mathrm{H}^{+}}+k_{2}^{\mathrm{BH}}[\mathrm{BH}]\right)+k_{-2} \mathrm{H}_{2} \mathrm{O}+k_{-2}{ }^{\mathrm{B}}\left[\mathrm{~B}^{-}\right] \tag{5}
\end{equation*}
$$

or, in the absence of buffer, by

$$
\begin{equation*}
\tau_{1}^{-1}=\frac{K_{\mathrm{a}}^{\mathrm{E}}}{K_{\mathrm{a}}^{\mathrm{E}}+a_{\mathrm{H}^{+}}} k_{2}^{\mathrm{H}} a_{\mathrm{H}^{+}}+k_{-2}{ }^{\mathrm{H}} \mathrm{H}_{2} \mathrm{O} \tag{6}
\end{equation*}
$$

The curvilinear plot of Figure 2 is consistent with eq 6 ; the best fit is obtained with $k_{2}{ }^{\mathrm{H}}=3.17 \pm 0.08 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}, k_{-2} \mathrm{H}_{2} \mathrm{O}=$ $2.82 \pm 0.13 \mathrm{~s}^{-1}$, and $\tilde{K}_{\mathrm{a}}^{\mathrm{E}}=4.33 \pm 0.30 \times 10^{-4} \mathrm{M}\left(\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{E}}=2.36\right.$ ± 0.03). The acid dissociation constant of $\mathrm{T}_{\mathrm{ID}}{ }^{0}$ (keto form) is then found as $K_{\mathrm{a}}{ }^{\mathrm{K}}=k_{-2}{ }^{\mathrm{H}_{2} \mathrm{O}} / k_{2}{ }^{\mathrm{H}}=8.90 \pm 0.70 \times 10^{-4} \mathrm{M}\left(\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{K}}\right.$ $=3.05 \pm 0.04$).
(12) See paragraph concerning supplementary material at the end of this paper.

Figure 3. Dependence of τ_{2} on $\mathrm{a}_{\mathrm{H}^{+}}$according to eq 10 ; from $\mathrm{pH}-$ jump experiments.

Scheme I

Table II. Rate Constants for Proton Transfer at Carbon of the ID Adduct of BID in $50 \% \mathrm{Me}_{2} \mathrm{SO}-50 \%$ Water at $20^{\circ} \mathrm{C}$

BH	$\mathrm{p} K_{\mathrm{a}}{ }^{\text {BH }}$	$\begin{gathered} k_{2}^{\mathrm{BH}} \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} k_{-2}{ }^{\mathrm{B}}, \\ \mathrm{M}^{-1} \mathrm{~s}^{-1} \end{gathered}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	-1.44	3.17×10^{3}	2.82/27.6
$\mathrm{Cl}_{2} \mathrm{CHCOOH}$	2.15	2.91×10^{2}	36.6
$\mathrm{ClCH}_{2} \mathrm{COOH}$	3.71	70.4	3.21×10^{2}
$\mathrm{MeOCH}_{2} \mathrm{COOH}$	4.54	28.0	9.05×10^{2}

The slopes of the plots of τ_{1}^{-1} vs. buffer acid concentration (not shown) are given by

$$
\begin{equation*}
\text { slope }=\frac{K_{\mathrm{a}}^{\mathrm{E}}}{K_{\mathrm{a}}^{\mathrm{E}}+a_{\mathrm{H}^{+}}} k^{\mathrm{BH}}+\frac{K_{\mathrm{a}}^{\mathrm{BH}}}{a_{\mathrm{H}^{+}}} k_{-2}^{\mathrm{B}} \tag{7}
\end{equation*}
$$

with $K_{\mathrm{a}}{ }^{\mathrm{BH}}$ being the acid dissociation constant of the buffer. Equation 7 is equivalent to

$$
\begin{equation*}
\text { slope }=k_{2}{ }^{\mathrm{BH}}\left(\frac{K_{\mathrm{a}}^{\mathrm{E}}}{K_{\mathrm{a}}{ }^{\mathrm{E}}+a_{\mathrm{H}^{+}}}+\frac{K_{\mathrm{a}}^{\mathrm{K}}}{a_{\mathrm{H}^{+}}}\right) \tag{8}
\end{equation*}
$$

Scheme II

Table III. Rate and Equilibrium Constants for the Reaction of ID $^{-}$ with BID (Eq 4) and Miscellaneous $\mathrm{p} K_{\mathrm{a}}$ Values ${ }^{a}$

constant	value
$k_{1}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$7.23 \pm 0.20 \times 10^{3}$
$k_{-1}, \mathrm{~s}^{-1}$	$9.35 \pm 1.50 \times 10^{-3}$
$K_{1}=k_{1} / k_{-1}, \mathrm{M}^{-1}$	$7.73 \pm 1.40 \times 10^{5}$
$\mathrm{p} K_{\mathrm{a}}$	3.05 ± 0.04
$\mathrm{p} K_{\mathrm{a}} \mathrm{E}$	2.36 ± 0.03
$K_{\mathrm{E}}\left(\mathrm{T}_{1 \mathrm{D}}{ }^{0}\right)^{b}$	0.204
$\mathrm{p} K_{\mathrm{a}}^{\mathrm{ID}}(\text { keto })^{c}$	6.35
$\mathrm{p} K_{\mathrm{a}} \mathrm{ID}(\text { enol })^{c}$	3.52
$K_{\mathrm{E}}(\mathrm{ID})^{b, c}$	1.48×10^{-3}

${ }^{a} \operatorname{In} 50 \% \mathrm{Me}_{2} \mathrm{SO}-50 \%$ water at $20{ }^{\circ} \mathrm{C}, \mu=0.5 \mathrm{M}(\mathrm{KCl})$. ${ }^{b}$ Enolization constant, $K_{\mathrm{E}}=K_{\mathrm{a}}^{\mathrm{K}} / K_{\mathrm{a}}^{\mathrm{E}}$ or $K_{\mathrm{a}}{ }^{\mathrm{ID}}($ keto $) / K_{\mathrm{a}}{ }^{\mathrm{ID}}$ (enol), respectively, with $K_{\mathrm{a}}{ }^{\mathrm{K}}$ and $K_{\mathrm{a}}{ }^{\mathrm{E}}$ referring to the adduct $\mathrm{T}_{1 \mathrm{D}}{ }^{0}, K_{\mathrm{a}}{ }^{\text {ID }}$ to ID. ${ }^{\circ}$ Reference 10.
$k_{2}{ }^{\mathrm{BH}}$ and $k_{-2}{ }^{\mathrm{B}}$ values thus obtained for methoxy-, chloro-, and dichloroacetic acid are summarized in Table II.

The $\tau_{2}{ }^{-1}$ process is associated with the recovery of BID, with both oxygen and carbon protonation of $\mathrm{T}_{\mathrm{ID}}{ }^{-}$acting as fast preequilibria. This is shown in Scheme II. $\tau_{2}{ }^{-1}$ is given by

$$
\begin{equation*}
\tau_{2}^{-1}=k_{-1} \frac{1}{\left.1+a_{\mathrm{H}^{+}\left(1 / K_{\mathrm{a}}\right.}{ }^{\mathrm{E}}+1 / K_{\mathrm{a}}^{\mathrm{K}}\right)} \tag{9}
\end{equation*}
$$

or, after inversion

$$
\begin{equation*}
\tau_{2}=\frac{1}{k_{-1}}+\frac{a_{\mathrm{H}^{+}}}{k_{-1}}\left(1 / K_{\mathrm{a}}^{\mathrm{E}}+1 / K_{\mathrm{a}}^{\mathrm{K}}\right) \tag{10}
\end{equation*}
$$

From the plot according to eq 10 (Figure 3) one obtains k_{-1} $=9.35 \pm 1.5 \times 10^{-3} \mathrm{~s}^{-1}$ and $1 / K_{\mathrm{a}}{ }^{\mathrm{E}}+1 / K_{\mathrm{a}}{ }^{\mathrm{K}}=1.76 \pm 0.25 \times 10^{3}$ M^{-1}. This latter value is in good agreement with $1 / K_{\mathrm{a}}^{\mathrm{E}}+1 / K_{\mathrm{a}}{ }^{\mathrm{K}}$ $=1.35 \times 10^{-3} \mathrm{M}^{-1}$ calculated from $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{E}}$ and $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{K}}$ evaluated from $\tau_{1}{ }^{-1}$.

Discussion

The rate and equilibrium constants determined in this study are summarized in Table II (proton transfer between $\mathrm{T}_{\text {ID }}{ }^{-}$and $\mathrm{T}_{1 \mathrm{D}}{ }^{0}$ keto, Scheme I) and Table III (eq 4 and miscellaneous equilibrium constants). Table IV compares relevant parameters of the BID/ID system (eq 4) with those of the BMN/MN- system (eq 1).

The BID/ID ${ }^{-}$vs. the BMN/MN ${ }^{-}$System. A. Equilibrium Constants. Considering the large difference in $\mathrm{p} K_{\mathrm{a}}$ between ID (6.35) and MN (10.21), the equilibrium constants, K_{1}^{\prime} (Table IV), for carbanion additon are remarkably similar for the two systems ($7.73 \times 10^{5} \mathrm{M}^{-1}$ for BID/ID ${ }^{-}, 1.45 \times 10^{5} \mathrm{M}^{-1}$ for $\mathrm{BMN} / \mathrm{MN}^{-}$). As stated in the Introduction this is not unexpected; the lower basicity of ID- which reflects its greater stability compared to that of MN^{-}is compensated for by the greater stability of the ID-type anion in the adduct. Nevertheless, the equilibrium constants are not identical, K_{1} for the BID $/$ ID $^{-}$system being about fivefold larger than that for the $\mathrm{BMN} / \mathrm{MN}^{-}$system.

No firm conclusions can be drawn from this small difference in K_{1} because of a paucity of systematic data on such equilibrium constants and a lack of a thorough understanding of all the factors which affect equilibrium constants in the addition of bases to activated olefins. ${ }^{1}$
B. Intrinsic Rates. The rate constants k_{1} and k_{-1} for the BID/ID ${ }^{-}$system are both substantially lower than those for the BMN/ MN^{-}system (ratios in last column of Table IV), indicating a lower intrinsic rate constant (higher intrinsic barrier) for the

BID/ID ${ }^{\text {² }}$ system, as anticipated. In order to correct for the slight difference in the equilibrium constants between the two systems, we adjust k_{1} and k_{-1} for the $\mathrm{BID} / \mathrm{ID}^{-}$system in such a way as to make K_{1} identical with the equilibrium constant for the $\mathrm{BMN} / \mathrm{MN}^{-}$system. This requires a slight reduction in k_{1} and a slight increase in k_{-1}. We assume that the "Bronsted slope", $\mathrm{d} \log k_{1} / \mathrm{d} \log K_{1}=-\mathrm{d} \log k_{-1} / \mathrm{d} \log K_{1}=0.5$ for this adjustment, and the adjusted k_{1} and k_{-1} values are given in parentheses in Table IV.

The ratio $k_{1}{ }^{\mathrm{MN}} / k_{1}{ }^{\text {ID }}=k_{-1}{ }^{\mathrm{MN}} / k_{-1}{ }^{\mathrm{ID}}=304$ (using the adjusted $k_{1}{ }^{\text {ID }}$ and $k_{-1}{ }^{\text {ID }}$ values) can be regarded as an approximation of the ratio of the intrinsic rate constants, $k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{ID}}\left(\log \left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{ID}}\right)\right.$ ≈ 2.48). In a similar way we have recently estimated log $\left(k_{0}^{\mathrm{MN}} / k_{0}{ }^{\mathrm{VO}} \mathrm{O}_{2}\right) \approx 5.7$ with $k_{0}{ }^{\mathrm{NO}_{2}}$ being the intrinsic rate constant for the reaction ${ }^{13}$

In view of the numerous recent endeavors at correlating intrinsic barriers of a variety of chemical reactions with the Marcus equation, ${ }^{11,14-17}$ it sesms worthwhile to ask whether our results could be fit into a Marcus formalism. The notion that intrinsic barriers of "cross reactions" can be expressed as the arithmetic mean of the intrinsic barriers of the corresponding "identity reactions" in electron, ${ }^{11}$ proton, ${ }^{11}$ and methyl transfer reactions ${ }^{11,14}$ is one of the most interesting aspects of the Marcus treatment. However, its application to reactions for which no identity reactions can be defined ${ }^{11,15-17}$ is more questionable, and for simple additions of nucleophiles to cations Ritchie ${ }^{18}$ has strongly argued against such application.
With nucleophilic additions to activated olefins and to carbonyl carbon the situation seems less clear-cut. This is because these reactions bear some resemblance to substitution reactions in the sense that there is a "leaving group" of sorts except that it does not leave, ${ }^{11 \mathrm{c}}$ and one can define "pseudo-identity" and "pseudocross" reactions as shown below. One may therefore arrive at a Marcus-type relation between the intrinsic barriers of pseudo-cross reactions and pseudo-identity reactions using the following reasoning.
Let us express the intrinsic barrier of reaction I

as

$$
\begin{equation*}
\Delta G_{0}^{*}(\text { eq I })=\Delta G_{0}^{*}(\mathrm{XY})_{\mathrm{C}=\mathrm{C}}+\Delta G^{*}(\mathrm{O})_{\mathrm{OH}^{-}} \tag{12}
\end{equation*}
$$

$\Delta G^{\ddagger}{ }_{0}(\mathrm{XY})_{\mathrm{C}}=\mathrm{c}$ can be thought of as the contribution which comes from the conversion of the $=\mathrm{CXY}$ moiety to the $-\mathrm{CXY}^{-}$moiety, while $\Delta G^{*}(\mathrm{O})_{\mathrm{OH}^{-}}$is the contribution from the $\mathrm{C}-\mathrm{O}$ bond formation between benzyl carbon and OH^{-}.
In a similar way we can regard the intrinsic barrier of reaction II

as the sum of a contribution from the conversion of the - CHXY

[^1]Table IV. Comparison between the BID/ID* and the BMN/MN* Systems in $50 \% \mathrm{Me}_{2} \mathrm{SO}-50 \%$ Water at $20^{\circ} \mathrm{C}$

	BID/ID ${ }^{-}$		BMN/MN ${ }^{-}$
		BMN/MN ${ }^{-a}$	BID/ID ${ }^{-}$
$k_{1}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$7.23 \times 10^{3}\left(3.13 \times 10^{3}\right)^{d}$	9.50×10^{5}	
$k_{-1}, \mathrm{~s}^{-1}$	$9.35 \times 10^{-3}\left(2.16 \times 10^{-2}\right)^{d}$	6.52	$697(304)^{e}$
K_{1}, M^{-1}	$7.73 \times 10^{5}\left(1.45 \times 10^{5}\right)^{d}$	1.45×10^{5}	$0.188(1.00)^{e}$
$\mathrm{pK} \mathrm{a}^{\circ}{ }^{\circ}$	3.05	5.07	
$\mathrm{p} K_{\mathrm{a}} \mathrm{Nuch}^{c}$	6.35	10.25	
$\log \left(k_{0} \mathrm{MN} / k_{0}{ }^{\text {ID }}\right)_{\text {eq III }}{ }^{f}$	≈ 2.48		
$\log \left(k_{0} \mathrm{MN} / k_{\mathrm{o}}{ }^{\mathrm{ID}}\right)_{\mathrm{eq} \mathrm{I}} \mathrm{g}$	≈ 2.04		
$\log \left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{ID}}\right)_{\mathrm{eqq} \mathrm{II}} \mathrm{If}^{\text {g }}$	≈ 1.78		

${ }^{a}$ From ref 2. ${ }^{b} \mathrm{p} K_{\mathrm{a}}{ }^{0}$ refers to T^{0}; in the BID/ID ${ }^{-}$system $\mathrm{p} K_{\mathrm{a}}{ }^{0}=\mathrm{p} K_{\mathrm{a}} \mathrm{K} .{ }^{c} \mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{NucH}}$ refers to $\mathrm{p} K_{\mathrm{a}}$ of ID and MN, respectively. ${ }^{d} \mathrm{Ad}$ justed to K_{1} of the $\mathrm{BMN} / \mathrm{MN}^{-}$system, based on $\mathrm{d} \log k_{1} / \mathrm{d} \log K_{1}=-\mathrm{d} \log k_{-1} / \mathrm{d} \log K_{1}=0.5$; see text. ${ }^{e}$ Using adjusted parameters for the $\mathrm{BID} / \mathrm{ID}^{-}$system. $f k_{0} \mathrm{MN} / k_{0} \mathrm{ID}$ assumed to be equal to $k_{1} \mathrm{MN} / k_{1} \mathrm{ID}=k_{-1} \mathrm{MN} / k_{-1} \mathrm{ID}$ using adjusted k_{1} ID and k_{-1} ID values; see text. grom ref 1.
moiety to $\mathrm{CHXY}{ }^{-}$and one from the formation of the $\mathrm{C}=\mathrm{O}$ double bond:

$$
\begin{equation*}
\Delta G^{\ddagger}{ }_{0}(\mathrm{eq} \text { II })=\Delta G^{\ddagger}{ }_{0}(\mathrm{XY})_{\mathrm{C}^{-}}+\Delta G^{\ddagger}{ }_{0}(\mathrm{O})_{\mathrm{C}=0} \tag{13}
\end{equation*}
$$

If we now add eq 12 and 13, we obtain

$$
\begin{equation*}
\Delta G_{0}^{\neq}(\mathrm{eq} \mathrm{I})+\Delta G_{0}^{*}(\mathrm{eq} \mathrm{II})=\Delta G_{0}^{*}(\mathrm{XY} / \mathrm{XY})+\Delta G_{0}^{*}(\mathrm{O} / \mathrm{O}) \tag{14}
\end{equation*}
$$

with

$$
\begin{gather*}
\Delta G^{\ddagger}{ }_{0}(\mathrm{XY} / \mathrm{XY})=\Delta G^{\ddagger}(\mathrm{XY})_{\mathrm{C}=\mathrm{C}}+\Delta G^{\ddagger}{ }_{0}(\mathrm{XY})_{\mathrm{C}^{-}} \tag{15}\\
\Delta G^{\ddagger}{ }_{0}(\mathrm{O} / \mathrm{O})=\Delta G^{*}(\mathrm{O})_{\mathrm{OH}^{-}}+\Delta G^{\ddagger}{ }_{0}(\mathrm{O})_{\mathrm{C}=0} \tag{16}
\end{gather*}
$$

It should be noted that thus far our formalism is not based on any particular model or assumption. However, at this point we introduce a Marcus-type assumption which stipulates that $\Delta G^{*}{ }_{0}(\mathrm{XY} / \mathrm{XY})$ is a good approximation of the intrinsic barrier of reaction III, and that $\Delta G^{*}(\mathrm{O} / \mathrm{O})$ is a good approximation of the intrinsic barrier of reaction IV.

This is expressed by

$$
\begin{gather*}
\Delta G_{0}^{\neq}(\mathrm{XY} / \mathrm{XY}) \approx \Delta G_{0}^{\neq}(\mathrm{eq} \text { III }) \tag{17}\\
\Delta G_{0}^{\ddagger}(\mathrm{O} / \mathrm{O}) \approx \Delta G^{\ddagger}{ }_{0}(\mathrm{eq} \text { IV }) \tag{18}
\end{gather*}
$$

and eq 14 becomes

$$
\begin{equation*}
\Delta G_{0}^{\ddagger}(\mathrm{eq} \mathrm{I})+\Delta{G^{*}}_{0}(\mathrm{eq} \mathrm{II}) \approx \Delta G_{0}^{*}(\mathrm{eq} \mathrm{III})+\Delta G^{\neq}(\mathrm{eq} \mathrm{IV}) \tag{19}
\end{equation*}
$$

It is now apparent that reactions III and IV take on the meaning of "pseudo-identity" reactions while eq I and II are the "pseudo-cross" reactions. Note that because there are no true identity reactions as in electron, proton, and methyl transfers, there are two different (pseudo) cross reactions rather than only one (authentic) cross reaction.

For a change from $X Y$ to $X^{\prime} Y^{\prime}$ such as the change from the MN to the ID or the NO_{2} system, we now obtain ($\Delta \Delta G^{\ddagger}{ }_{0}$ (eq IV) $=0$)

$$
\begin{equation*}
\Delta \Delta G^{\ddagger}{ }_{0}\left(\mathrm{eq} \text { I) }+\Delta \Delta G^{\ddagger}{ }_{0}(\mathrm{eq} \mathrm{II}) \approx \Delta \Delta G^{\ddagger}{ }_{0}(\mathrm{eq} \text { III })\right. \tag{20}
\end{equation*}
$$

or

$$
\begin{align*}
\log \left(k_{0} \mathrm{XY} / k_{0}^{\mathrm{X}^{\prime} \mathrm{Y}^{\prime}}\right)_{\mathrm{eq} \mathrm{I}}+\log \left(k_{0}^{\mathrm{XY}} / k_{0}^{\mathrm{X} \mathrm{Y}^{\prime}}\right)_{\mathrm{eq}} \mathrm{II} & \approx \\
& \log \left(k_{0}^{\mathrm{XY}} / k_{0} \mathrm{X}^{\prime} \mathrm{Y}^{\prime}\right)_{\mathrm{eq} 111} \tag{21}
\end{align*}
$$

How well does eq 21 reproduce our results? For the MN/ID comparison we have $\log \left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{ID}}\right)_{\text {eq } 1}+\log \left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{ID}}\right)_{\text {eq } 11} \approx$
$1.86+1.78=3.64$ which is $1.16 \log$ units larger than the experimental $\log \left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\text {ID }}\right)_{\text {eq }}$ iII of 2.48 . For $\mathrm{MN} / \mathrm{NO}_{2}$ the corresponding ratios are $\log \left(k_{0} \mathrm{MN}^{2} / k_{0} \mathrm{NO}_{2}\right)_{\text {eq } 1}+\log \left(k_{0} \mathrm{MN} /\right.$ $\left.k_{0}{ }^{\mathrm{NO}_{2}}\right)_{\text {eq II }} \approx 4.20^{13}+3.96^{13}=8.16$ which is 2.44 log units higher than the experimental $\log \left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{NO}_{2}}\right)_{\text {eq }}{ }_{\text {III }} \approx 5.70$.

Despite the fact that eq 21 overestimates $\log \left(k_{0}{ }^{X Y} / k_{0}{ }^{X^{\prime} Y^{\prime}}\right)_{\text {eq }}$ III for both comparisons, it is noteworthy that the experimental $\log \left(k_{0}{ }^{X Y} / k_{0}{ }^{\prime \prime} Y^{\prime}\right)_{\text {eq }}$ III values are significantly larger than either $\log \left(k_{0}{ }^{\mathbf{X Y}} / k_{0}{ }^{X^{\prime}}\right)_{\text {eq }} 1$ or $\log \left(k_{0}{ }^{X Y} / k_{0}{ }^{X^{\prime} Y^{\prime}}\right)_{\text {eq }}$ 11, in qualitative agreement with the basic Marcus idea. Nevertheless, one wonders why the quantitative agreement is not better.

One possible factor for the lack of quantitative agreement is the significant experimental uncertainty in some of the ratios, particularly in $\left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{1 \mathrm{D}}\right)_{\text {eq } 11},{ }^{1}\left(k_{0}{ }^{\mathrm{MN}} / k_{0}{ }^{\mathrm{NO}_{2}}\right)_{\text {eq } 11},{ }^{1}$ and $\left(k_{0}{ }^{\mathrm{MN}} /\right.$ $\left.k_{0}{ }^{\mathrm{NO}}\right)_{\text {eq }}$ III ${ }^{13}$ which arise from uncertainty in equilibrium constants, ${ }^{13}$ and the relatively long extrapolations coupled with the arbitrary assumption that the Bronsted slopes can always be approximated by $0.5{ }^{1}$

A second factor may be related to the criticism voiced by Ritchie, ${ }^{18}$ namely, the fact that eq III and IV are not true identity reactions. It would be interesting in this context to examine proton-transfer reactions involving the same type of activating substitutents ($(\mathrm{CN})_{2}, \beta$-diketo, $\left.\mathrm{NO}_{2}\right)$ and see whether the quantitative adherence to the Marcus stipulation that the intrinsic barrier of a cross reaction is the arithmetic mean of the two corresponding identity reactions is indeed better than what we observe here. It is noteworthy that there still exist only very few data of this kind for proton transfers. ${ }^{19}$

A third factor which is likely to play a role in some of our reactions is the large transition-state imbalances which are characteristic of reactions involving resonance-stabilized carbanions, ${ }^{7}$ particularly with nitronate ions. ${ }^{20,21}$ Such imbalances lead to substituent effects on the intrinsic barriers which cannot be accommodated by the original Marcus formalism. ${ }^{22,23}$ This is because the Marcus formalism is based on the description of the reaction coordinate by a single progress variable while reactions with imbalanced transition states need at least two variables (e.g., one for the formation of bonds, the other for the development of resonance) for an adequate description of the reaction coordinate. ${ }^{7,24,25}$ Grunwald ${ }^{26}$ has recently suggested a possible way to deal with this problem.

A fourth factor may be the neglect of work terms in the Marcus equation. ${ }^{119}$ These are commonly explicitly considered in elec-tron-transfer reactions but usually incorporated into the intrinsic

[^2]

Figure 4. Bronsted plots for the deprotonation of the adduct $\mathrm{T}_{1 \mathrm{D}}{ }^{0}$ keto (O) by water, $\mathrm{Cl}_{2} \mathrm{CHCOO}^{-}, \mathrm{ClCH}_{2} \mathrm{COO}^{-}$, and $\mathrm{MeOCH}_{2} \mathrm{COO}^{-}$, and of ID ($)$ by water, $\mathrm{ClCH}_{2} \mathrm{COO}^{-}, \mathrm{MeOCH}_{2} \mathrm{COO}^{-}$, and $\mathrm{AcO}^{-} ; \mathrm{ApK}=\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{BH}}$ $-\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{CH}}$.
barrier for other reactions. ${ }^{27}$ We do not believe that this is an important factor, though.

Enol Formation: $\mathbf{p} \boldsymbol{K}_{\mathrm{a}}{ }^{\mathrm{K}}$ and $\mathbf{p} \boldsymbol{K}_{\mathrm{a}}{ }^{\mathrm{E}}$. From Table III we see that $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{K}}$ of $\mathrm{T}_{1 \mathrm{D}}{ }^{0}{ }_{\text {kelo }}$ (Scheme I) is 3.3 units lower than the $\mathrm{p} K_{\mathrm{a}}$ of the keto form of ID. This reflects the electron-withdrawing effect of the ID moiety. A similar comparison in the BMN/MN system shows that the adduct ($\mathrm{T}_{\mathrm{MN}}{ }^{\circ}$) is $5.14 \mathrm{pK}_{\mathrm{a}}$ units more acidic than MN (Table IV). The larger effect in the BMN/MN ${ }^{-}$system is probably the result of two factors: (a) a larger polar effect of the MN moiety ${ }^{28}$ compared to the ID moiety; ${ }^{29}$ (b) substantial delocalization of the negative charge into the oxygens in $\mathrm{T}_{\mathrm{ID}}{ }^{-}$which renders the $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{K}}$ of $T_{1 \mathrm{D}}{ }^{0}$ keto less sensitive to polar effects.

The acidifying effect of the ID moiety on the enol form ($\mathrm{T}_{\text {ID }}{ }^{0}{ }_{\text {enol }}$) is a relatively modest $1.16 \mathrm{p} K_{\mathrm{a}}$ units (Table III) and thus is much less than that on the keto form. According to the thermodynamic cycle

this means that the enolization constant, $K_{\mathrm{E}}=K_{\mathrm{a}}{ }^{\mathrm{K}} / K_{\mathrm{a}} \mathrm{E}$ is much larger for the BID/ID adduct ($K_{\mathrm{E}}=0.204$) than for ID itself (K_{E} $=1.48 \times 10^{-3}$)
(27) See, however, ref 25, and (a) Kreevoy, M. M.; Konasewich, D. E. Adv. Chem. Phys. 1971, 21, 241. (b) Kreevoy, M. M.; Oh, S.-W. J. Am. Chem. Soc. 1973, 95, 4805. (c) Albery, W. J.; Campbell-Crawford, A. N.; Curran, J. S. J. Chem. Soc., Perkin Trans. 2 1972, 2206.
(28) $\sigma_{1}=0.55$ for $\mathrm{CH}(\mathrm{CN})_{2}{ }^{30}$
(29) σ_{1} for $\mathrm{HC}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ is not known but may be estimated at $\$ 0.3 ; 0.3$ would be three times the σ_{1} value of 0.1 for $\mathrm{CH}_{2} \mathrm{COCH}_{3},{ }^{30}$ in analogy to σ_{1} for $\mathrm{CH}(\mathrm{CN})_{2}$ being three times σ_{1} for $\mathrm{CH}_{2} \mathrm{CN}^{30}$ Since in most cases σ_{1} of CHX_{2} is less than three times σ_{1} of $\mathrm{CH}_{2} \mathrm{X},{ }^{30}$ the factor of 3 is an upper limit.
(30) Exner, O. In "Correlation Analysis in Chemistry"; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.

We attribute this large increase in the enolization constant mainly to intramolecular hydrogen bonding in $\mathrm{T}_{\mathrm{ID}}{ }^{0}$ enol as shown in Scheme I. Intramolecular hydrogen bonding is indeed a well-documented phenomenon in the stabilization of many enols. ${ }^{31}$ The electron-withdrawing effect of the ID moiety may be a contributing factor; ${ }^{31}$ in fact, the introduction of a phenyl group at the 2 position of ID increases the enol content to 2.4% in aqueous solution. ${ }^{32}$

Rates of Proton Transfer. The rate constants for proton transfer are summarized in Table II. Figure 4 shows a Brønsted plot for the deprotonation of $\mathrm{T}_{1 \mathrm{D}}{ }^{0}$ keto along with a similar plot for the deprotonation of ID^{10} by three carboxylate ions. ${ }^{33}$ The Brønsted β-values are $\beta=0.58 \pm 0.03$ for $\mathrm{T}_{\mathrm{ID}}{ }^{0}$ keto,$\beta=0.48 \pm 0.03$ for ID .

The Bronsted line for $\mathrm{T}_{1 \mathrm{D}}{ }^{\circ}$ keto lies below that for ID; at $\Delta \mathrm{p} K_{\mathrm{a}}$ $+\log (p / q)=0$ the difference amounts to a factor of 12 . We attribute the reduced proton-transfer rate for $\mathrm{T}_{\text {ID }}{ }^{0}$ kelo to a steric effect.

Experimental Section

Materials. 1,3-Indandione (Aldrich) was recrystallized from ethanol, $\left.\mathrm{mp} 131-132^{\circ} \mathrm{C}\left(130^{\circ} \mathrm{C}\right)\right)^{34}$ Benzylidene-1,3-indandione was available from a previous study. ${ }^{1}$ Chloroacetic acid was recrystallized from petroleum ether. Reagent grade $\mathrm{Me}_{2} \mathrm{SO}$ was stored over 4A molecular sieves. All other materials were analytical-grade products which were used without further purification.

Kinetics. When measuring the rates of adduct formation, an acidic solution of $2 \times 10^{-5} \mathrm{M}$ BID was mixed in the stopped-flow apparatus with slightly basic p-cyanophenol buffers containing varying concentrations of ID. The excess of [ID] $]_{0}$ over [BID] $]_{0}$ was always at least 10 -fold. Since ID ${ }^{-}$also absorbs in the range of $\lambda_{\max }$ of BID ($343 \mathrm{~nm}, \epsilon 2.47 \times 10^{4}$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$) where the reaction was monitored, it was not possible to use $[\mathrm{ID}]_{0}$ greater than $8 \times 10^{-4} \mathrm{M}$.

For the pH -jump experiments the adduct, $\mathrm{T}_{1 \mathrm{D}}{ }^{-}$, was generated by mixing equimolar quantities of BID and ID in a small excess of KOH , giving a pH of ~ 9.2 after formation of $\mathrm{T}_{1 \mathrm{D}^{-}}$. These solutions were quite stable for several days but were always used within 12 h after preparation. the pH jump was produced by adding an acidic buffer or an HCl solution to the $\mathrm{T}_{1 \mathrm{D}}{ }^{-}$solution, either in the stopped-flow apparatus $\left(\tau_{1}^{-i}\right)$ or a conventional spectrophotometer $\left(\tau_{2}^{-1}\right)$.
pH measurements were performed on mock solutions which simulated the stopped-flow expertments. For the slow reactions the pH was determined in the actual reaction solution.

Acknowledgment. This work has been funded by Grant No. CHE-8315374 from the National Science Foundation.

Registry No. ID, 606-23-5; ID $^{-}$, 19368-95.7; MN ${ }^{-}$, 41470-37-5; BID, 5381-33-9; BMN, 2700-22-3; TIDO keto, 7421-80-9; TIDO enol, 98635-29-1; TlD ${ }^{-}$, $98635-30-4$; $\mathrm{AcO}^{-}, 71-50-1 ; \mathrm{Cl}_{2} \mathrm{CHCOO}^{-}, 13425-$ $80-4 ; \mathrm{H}_{3} \mathrm{O}^{+}, 13968-08-6 ; \mathrm{Cl}_{2} \mathrm{CHCOOH}, 79-43-6 ; \mathrm{ClCH}_{2} \mathrm{COOH}, 79-$ 11-8; $\mathrm{MeOCH}_{2} \mathrm{COOH}, \quad 625-45-6 ; \mathrm{ClCH}_{2} \mathrm{COO}^{-}, \quad 14526-03-5$; $\mathrm{MeOCH}_{2} \mathrm{COO}^{-}$, 20758-58-1; water, 7732-18-5.

Supplementary Material Available: Tables S1 and S2, kinetic data (3 pages). Ordering information is given on any current masthead page.

[^3]
[^0]: (3) (a) Hibbert, F. Compr. Chem. Kinet. 1977, 8, 97. (b) Hibbert, F.; Long, F. A.; Walters, E. A. J. Am. Chem. Soc. 1971, 93, 2829.
 (4) Bernasconi, C. F.; Fox, J. P.; Fornarini, S. J. Am. Chem. Soc. 1980, 102, 2810.
 (5) Bernasconi, C. F.; Howard, K. A.; Kanavarioti, A. J. Am. Chem. Soc. 1984, 106, 6827.
 (6) Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1984, 106, 3257.
 (7) For a recent review, see: Bernasconi, C. F. Pure Appl. Chem. 1982, 54, 2335.
 (8) k_{0} is defined as the rate constant when the equilibrium constant is unity; $\Delta G^{*}{ }_{0}$ is defined as ΔG^{\ddagger} when $\Delta G^{\circ}=0$.
 (9) In $50 \% \mathrm{Me}_{2} \mathrm{SO}-50 \%$ water at $20^{\circ} \mathrm{C}$.
 (10) Bernasconi, C. F.; Paschalis, P. J. Am. Chem. Soc., in press.
 (11) (a) Marcus, R. A. J. Phys. Chem. 1968, 72, 891 . (b) Cohen, A. O.; Marcus, R. A. Ibid. 1968, 72, 4249. (c) Albery, W. J. Annu. Rev. Phys. Chem. 1980, 31, 227.

[^1]: (13) Bernasconi, C. F.; Zitomer, J. L., to be submitted for publication. (14) (a) Lewis, E. S.; Hu, D. D. J. Am. Chem. Soc. 1984, 106, 3292. (b) Brauman, J. I.; Dodd, J. A. Ibid. 1984, 106, 5356. (c) Pellerite, M. J.; Brauman, J. I. Ibid. 1983, 105, 2672.
 (15) Chen, M. Y.; Murdoch, J. R. J. Am. Chem. Soc. 1984, 106, 4735.
 (16) (a) Hine, J. J. Am. Chem. Soc. 1971, 93, 3701. (b) Bernasconi, C. F.; Leonarduzzi, G. D. Ibid. 1982, 104, 5133.
 (17) Guthrie, J. P. J. Am. Chem. Soc. 1973, 95, 6999; 1974, 96, 3608; 1978, 100, 5892; 1980, 102, 5177 .
 (18) Ritchie, C. D.; Kubisty, C.; Ting, G. Y. J. Am. Chem. Soc. 1983, 105, 279.

[^2]: (19) Murdoch, J. R.; Bryson, J. A.; McMillen, D. F.; Brauman, J. I. J. Am Chem. Soc. 1982, 104, 600.
 (20) (a) Bordwell, F. G.; Boyle, W. J., Jr. J. Am. Chem. Soc. 1972, 94 3907; 1975, 97, 3447. (b) Bordwell, F. G.; Bartmess, J. E.; Hautala, J. A. J. Org. Chem. 1978, 43, 3107.
 (21) Kresge, A. J. Can. J. Chem. 1974, 52, 1897.
 (22) Marcus, R. A. J. Am. Chem. Soc. 1969, 91, 7224.
 (23) Kurz, J. L. J. Org. Chem. 1983, 48, 5117.
 (24) Jencks, D. A.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 7948.
 (25) Kresge, A. J. Chem. Soc. Rev. 1973, 2, 475.
 (26) Grunwald, E. J. Am. Chem. Soc. 1985, 107, 125.

[^3]: (31) Forsen, S.; Nilsson, M. In "The Chemistry of the Carbonyl Group"; Zabicky, J., Ed.; Wiley-Interscience: New York, 1970; Vol. 2, p 157.
 (32) Stella, V. J.; Gish, R. J. Pharm. Sci. i979, 68, 1042, 1047.
 (33) $\mathrm{ClCH}_{2} \mathrm{COO}^{-}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{COO}^{-}$, and AcO^{-}.
 (34) Sieglitz, A. Chem. Ber. 1951, 84, 607.

